Преимущество этого аппарата перед аналогами
- 1. большая производительность при небольших габаритах
- 2. стабильное давление
- 3. специальная технология изготовления пластин обеспечивает большой ресурс работы
- 4. применение ШИМ (PWM) позволило уменьшить энергозатраты и снизить вес оборудования
- 5. интеллектуальное управление
- 6. Автоматическое и ручное управление
- 7. удобство в использовании
- 8. долговечность и простота обслуживания
- 9. удобное управление мощностью
- 10. широкий спектр применения
- 11. высокое качество при небольшой стоимости
- 12. высокая эффективность и удобство, по сравнению с газобаллонным оборудованием
- 13. один аппарат можно использовать для работ на нескольких рабочих местах одновременно. Аппарат будет самостоятельно подстраиваться под действия персонала, автоматически удерживая нужное давление газа в системе.
Достоинства и недостатки водородной сварки
Соединение деталей подобным способом обладает множеством преимуществ, о которых нельзя не упомянуть:
- высокая эффективность,
- безопасность выполнения сварочных работ,
- экологичность, поскольку в атмосферу не выделяются вредные токсины,
- аппараты компактные и удобные в управлении,
- подходят для обработки деталей, выполненных из различных материалов: сталь, стекло, чугун, цветные металлы,
- работают на воде, для нормального бесперебойного функционирования не требуются другие составляющие,
- сварочный аппарат не нужно перезаряжать.
Несмотря на большое количество плюсов, выделяются и некоторые недостатки:
- маленькие горелки могут применяться исключительно для тонких изделий, для толстых деталей нужны мощные сварочные аппараты,
- если вы соединяете детали из меди или из легированной стали, то полученные швы будут сопровождаться множеством пор,
- пламя от чистого водорода практически невозможно рассмотреть невооруженным глазом.
Технология процесса водородной сварки
Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.
Устройство водородной горелки.
При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.
В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.
Особенности
Водородное пламя — прекрасная альтернатива сварке ацетиленом. При этом данная технология практически безвредна, так как во время горения дуги задействован только водород, а именно водяной пар. Но при всей безопасности, шов в результате может получиться тонким и пористым, а в сварочной зоне образоваться много шлака. Во избежание тонких и слабых швов в процессе сварочных работ к водороду добавляют другие газы. Основные 5 наименований:
- Толуол.
- Бензин.
- Бензол.
- Гексан
- Гептан.
Эти кислородные соединения облегчают процесс сварки. Их добавляют по чуть-чуть, поэтому стоимость работ весьма низкая, по сравнению с другими видами сварки.
Использование баллонов с газом, в данном случае водородом, невозможно, так как высок риск утечки. Высокая концентрация водорода в помещении может вызвать приступ удушья и головокружение, а также спровоцировать взрыв.
По причине невозможного использования сжиженного газа в баллонах, его стали извлекать из воды. Для этого потребовались специальные аппараты, заполненные водой. При прохождении электрического тока через воду, она распадается на кислород и водород, количество последнего вполне хватает для сварочных работ.
Для выработки водорода посредством электролиза стали производить специальные сварочные аппараты — электролизеры, в которых дистиллят вырабатывает оптимальное количество как кислорода, так и водорода. Изначально электролизеры были довольно громоздкими, но впоследствии стали более компактными и мобильными, что совсем не повлияло на качество сварных соединений.
Функциональные возможности плазмореза
Список работ, которые можно выполнить с помощью аппарата «Горыныч» объемен, это:
- сварка и пайка материалов из цветных, нержавеющих сталей (поэтому, когда требуется эффективная разноплановая пайка и одновременно плазменная сварка, Горыныч купить будет правильным решением)
- резка чугуна, цветных металлов и стальных сплавов;
- возможность закалки металла;
- работа с термоусадочными полимерными материалами;
- получение некоторых химических образований;
- очистка различных термически устойчивых изделий с помощью устройства плазменная сварка Горыныч, цена на который способна оправдать себя через несколько циклов подобных очисток, является очень удобным способом, благодаря скорости и качеству процедуры очистки;
- обработка минералов (кварц, базальт, мрамор, графит и др. материалы);
- воронение не слишком больших деталей;
- производство напыления порошкового типа с помощью устройства Горыныч-сварка, цена которого существенно ниже стоимости иных способов организации порошкового напыления;
- обработка и изготовление стеклянных изделий;
- нанесение на изделия глазури;
- разделка стеклянных полотен с помощью устройства плазменная сварка Горыныч, цена которого сильно превышает стоимость обычных стеклорезов, оправдывает себя отсутствием брака и точностью срезных отверстий;
- удаление эрозии с поверхности металлов с помощью устройства плазменная сварка Горыныч, цена на который несопоставима со стандартными методами удаления ржавчины, способна оправдать себя в других сферах;
- очистка микроотверстий в металлических фильтрах;
- оплавление бетона для придания водоотталкивающих качеств;
- моментальное пожаротушение с помощью водяного пара.
Кроме того, плазменный сварочный аппарат Горыныч можно использовать в качества ряда инструментов:
- болгарку;
- промышленные ножницы;
- электрический лобзик;
- паяльник и термопистолет;
- горелку газового типа, сварочный инвертор;
- резак лазерного типа.
Водородный резак своими руками — Металлы, оборудование, инструкции
27 октября 2015
Водородное пламя может быть прекрасной альтернативой ацетиленовому, с его помощью также можно проводить резку, пайку и сварку. Водородная сварка практически безвредна, причиной тому является пар, являющийся здесь продуктом горения.
Если вы владеете газовой, то водородная сварка не будет для вас слишком затруднительной. Люди пользуются газовой сваркой уже более века, основным горючим газом в ней является ацетилен, однако водород более продуктивен, отличие в том, ацетиленовое пламя способно восстановить железо, а водородное его окисляет.
Водородная сварка происходит с участием кислорода и смеси горючего газа. Сварочная ванна в этом случае покрывается слоем шлака, с шов получается тонким и пористым, сейчас применяются углеводороды, при помощи которых удалось решить эту проблему.
Водородная горелка своими руками
Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.
Самодельный водородный генератор:
Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали.
Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это.
Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.
Рисунок №1 – Структурная схема водородной горелки
Суть водородной горелки заключается в получении водорода путём электролиза воды.
Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).
Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:
Рисунок №2 – Электролизёр
Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!
Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.
Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).
Рисунок №3 – Как подсоединить провода
Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!
На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция)
При работе с водородной горелкой следует:
Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей
Обратите внимание на мои советы – я это реально проделывал и знаю что говорю
В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!
Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания.
И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.
Постройка водородной горелки
Приступаем к созданию водной горелки. Традиционно, начинать будем с приготовления необходимых инструментов и материалов.
Что потребуется в работе
- Лист «нержавейки».
- Обратный клапан.
- Два болта 6х150, гайки и шайбы к ним.
- Фильтр проточной очистки (от стиральной машины).
- Прозрачная трубка. Для этого идеально подходит водяной уровень – в магазинах стройматериалов он продается по 350 рублей за 10 м.
- Пластиковый герметичный контейнер для пищи емкостью 1,5 л. Примерная стоимость – 150 рублей.
- Штуцеры с «елочкой» ø8 мм (такие отлично подойдут для шланга).
- Болгарка для распиливания металла.
А теперь разберемся, какую именно нержавеющую сталь нужно использовать. В идеале для этого следует взять сталь 03Х16Н1. Но купить целый лист «нержавейки» порой весьма накладно, ведь изделие толщиной 2 мм стоит более 5500 рублей, к тому же его нужно как-то привезти. Поэтому, если где-то завалялся небольшой кусок такой стали (хватит и 0,5х0,5 м), то можно обойтись и им.
Корпус никель-водородного аккумулятора
Мы будем использовать нержавеющую сталь, потому что обычная, как известно, в воде начинает ржаветь. Более того, в нашей конструкции мы намерены применять щелочь вместо воды, то есть среду более чем агрессивную, да и под действием электротока обычная сталь долго не прослужит.
Инструкция по изготовлению
Первый этап. Для начала берем лист стали и размещаем его на ровной поверхности. Из листа указанных выше размеров (0,5х0,5 м) должно получиться 16 прямоугольников для будущей горелки на водороде, вырезаем их болгаркой.
Второй этап. С обратной стороны пластин просверливаем отверстия для болта. Если бы мы планировали сделать «сухой» электролизер, то просверлили отверстия и снизу, но в данном случае этого делать не надо. Дело в том, что «сухая» конструкция порядком сложнее, да и полезная площадь пластин в ней использовалась бы не на 100%. Мы же сделаем «мокрый» электролизер – пластины полностью погрузятся в электролит, а в реакции будет участвовать вся их площадь.
Третий этап. Принцип работы описываемой горелки основывается на следующем: электроток, проходя через погруженные в электролит пластины, приведет к тому, что вода (она должна входить в состав электролита) разложится на кислород (О) и водород (Н). Следовательно, мы должны располагать одновременно двумя пластинами – катодом и анодом.
С увеличением площади этих пластин увеличивается объем газа, поэтому в данном случае используем по восемь штук на катод и анод, соответственно.
Каждая молекула воды состоит из двух атомов водорода и одного атома
Четвертый этап. Далее нам предстоит установить пластины в пластиковый контейнер так, чтобы они чередовались: плюс, минус, плюс, минус и т. д. Для изоляции пластин используем куски прозрачной трубки (мы купили ее целых 10 м, поэтому запас есть).
Нарезаем из трубки небольшие кольца, разрезаем их и получаем полоски толщиной примерно 1 мм. Это идеальное расстояние, чтобы водород в конструкции эффективно генерировался.
Пятый этап. Пластины крепим друг к другу с помощью шайб. Делаем это следующим образом: надеваем шайбу на болт, затем пластину, после нее три шайбы, еще одну пластину, опять три шайбы и т. д. Восемь штук вешаем на катод, восемь – на анод.
Далее затягиваем гайки и изолируем пластины посредством нарезанных ранее полосок.
Шестой этап. Смотрим, куда именно в контейнере упираются болты, просверливаем в том месте отверстия. Если вдруг болты не помещаются в контейнер, то мы спиливаем их до требуемой длины. Затем вставляем болты в отверстия, надеваем на них шайбы и зажимаем гайками – для лучшей герметичности.
Далее проделываем дыру в крышке для штуцера, вкручиваем сам штуцер (желательно намазав место соединения силиконовым герметиком). Дуем в штуцер, чтобы проверить герметичность крышки. Если воздух все же выходит из-под нее, то промазываем и это соединение герметиком.
Седьмой этап. По окончании сборки тестируем готовый генератор. Для этого подключаем к нему любой источник, заполняем контейнер водой и закрываем крышку. Далее на штуцер надеваем шланг, который опускаем в емкость с водой (чтобы увидеть пузырьки воздуха). Если источник недостаточно мощный, то их в емкости не будет, но вот в электролизере они появятся обязательно.
Далее нам нужно повысить интенсивность выхода газа посредством увеличения напряжения в электролите. Здесь стоит отметить, что вода в чистом виде не является проводником – ток проходит через нее благодаря имеющимся в ней примесям и соли. Мы же разбавим в воде немного щелочи (к примеру, гидроксид натрия отлично подходит – в магазинах он продается в виде чистящего средства «Крот»).
Особенности водородного генератора
Исключение составляют технологические процессы, при которых газ образуется как побочный продукт, но такое его производство имеет пока мизерные объемы.
Гораздо проще выделять водород из воды, пропуская через нее электрический ток – этот процесс и называют электролизом. Сначала молекула Н2О распадается на атом водорода Н и гидроксогруппу ОН, затем происходит окончательное разделение кислорода и водорода.
Первый, имея отрицательный заряд, устремляется к аноду, второй – к катоду. Элементы накапливаются в виде пузырьков, которые, достигнув определенного размера, отрываются от электрода и всплывают. Далее кислород и водород без всякого разделения (эта смесь получила название «газа Брауна») поступают в горелку, где в процессе сжигания снова превращаются в воду. Чтобы подача готового продукта происходила без затруднений, водородные генераторы часто оборудуют воздушным дренажом.
Очевидно, что производительность установки будет возрастать с увеличением площади контакта между водой и электродами. По этой причине последние выполняют в виде пластин. Они собираются в конструкции, напоминающие стальные ребристые радиаторы отопления.
С целью увеличения производительности сегодня применяют цилиндрические электроды, а также имеющие более сложную форму.
Скорость выделения водорода зависит и от материала электродов.
Вместо меди или нержавеющей стали в современных «продвинутых» генераторах применяют особые сплавы, которые стоят достаточно дорого.
Еще одно условие – вода должна пропускать ток. Отметим, что в дистиллированном виде она является диэлектриком. Проводником электричества эту жидкость делают ионы, на которые распадаются растворенные в ней вещества, в первую очередь соли. Чем более крутым является раствор, тем лучше он будет пропускать ток.
С увеличением размеров электрода уменьшается мощность выделения тепла при пропускании через него электрического тока. Это очень важный момент, поскольку при нагреве свыше 65 градусов пластины интенсивно покрываются налетом, который придется постоянно счищать.
Положительные качества водородной сварки
Водородная сварка, которая проводится своими руками, имеет много положительных качеств, о которых должен знать каждый начинающий сварщик. К самым главным относят:
- При ее проведении не требуется часто перезаряжать сварочный аппарат, это экономит много времени;
- Быстро входит в рабочий режим. На этот процесс может уходить максимум 5 минут в зависимости от расхода газа и показателей атмосферы;
- Обладает повышенной мощностью при небольших габаритах оборудования;
- Имеет экологическую частоту. В отличие от ацетиленовой газовая сварка своими руками с водородом не выделяет пары азота, которые оказывают отравляющее воздействие на здоровье;
- Сварочный аппарат, который применяется при водородном сварочном процессе, обладает высокой пожаробезопасностью;
- Конструкция установки максимально продумана, она позволяет избежать возгорания и взрывов;
- При помощи сварки с водородом можно обрабатывать и сваривать разные виды материалов — разные цветные металлы, чугун, сталь, стекло, керамику;
- После сваривания швы не окисляются;
- Для того чтобы обеспечить бесперебойный процесс сваривания достаточно иметь всего несколько доступных компонента — воду и источник тока.
О процессе
Для осуществления сварочных работ в водородной среде необходимо использовать качественное оборудование. Сварочный аппарат — электролизер играет далеко не последнюю роль в получении аккуратного соединения. Его основными составляющими являются:
- горелка для подачи газа к заготовкам;
- шланг для соединения элементов;
- охладитель — обогатитель, в котором скапливается лишняя влага;
- регулятор мощности тока;
- регулятор уровня пламени (гаситель).
Процесс сварки водородом проходит намного быстрее, чем у других типов. Началом служит распад дистиллята на составляющие. После этого водород из одноатомного становится двухатомным, высвобождая энергию, ускоряющую процесс соединения. Благодаря такому водороду сварные швы получаются не только аккуратными, но и герметичными.
Водородная сварка подходит практически для соединения любых металлов, даже для вольфрама. При работе с изделиями из нержавеющей стали водород растворяется в расплавленном никеле, а при взаимодействии с медью швы получаются рыхлыми и слабыми, но не окисляются.
При работе со сваркой водородом обязательным условием является направление струи пламени в противоположную от электролизера сторону, так как рабочая температура в водородной среде варьируется от 250°С до 3000°С. По этой же причине не стоит пренебрегать защитной амуницией и использовать при работе специальную одежду, обувь и очки для сварочных работ.
Критерии качества установки
Собрать качественную эффективную и продуктивную установку в домашних условиях крайне сложно. К примеру, если даже взять в расчёт такой критерий, как металл, из которого делаются электродные пластины или трубки, уже есть риск столкнуться с проблемами.
Долговечность электродов зависит от вида металла и его свойств. Можно, конечно, использовать ту же самую нержавейку, но продолжительность жизни таких элементов будет недолгой.
Некая пародия электродных пластин для генератора водорода. Взяты пластины от обычного переменного конденсатора, которые сделаны из алюминия. Таких электродов хватит ровно на полчаса работы даже в составе малой экспериментальной системы
Существенную роль играют также монтажные размеры. Необходимы расчёты с высокой точностью по отношению к требуемой мощности, качеству воды и прочим параметрам.
Так, если величина зазора между рабочими электродами окажется вне расчётного значения, водородный генератор может не функционировать вовсе. В худшем случае мощность, на которую делался расчёт, окажется в несколько раз меньшей.
Даже сечение провода, соединяющего электроды с источником питания, имеет значение в устройстве генератора водорода. Правда, здесь дело касается безопасной эксплуатации устройства. Тем не менее, следует учитывать и эту деталь конструкции в домашнем исполнении.
Возвращаясь к безопасной эксплуатации системы, следует также не забывать о внедрении в конструкцию так называемого водяного затвора, препятствующего обратному движению газа.
Несмотря на довольно внушительное число разработок самодельных генераторов водорода, реально эффективного варианта пока нет. Все модели уступают заводскому оборудованию
Отопление дома газом Брауна
Водород является самым распространенным химическим элементом, поэтому экономически выгодно его использовать.
Для многих владельцев домов и дач часто встает вопрос, как получить «чистую» и дешевую энергию для нужд в быту. Ответ можно найти в таких инновациях, как водогенератор для отопления жилища.
Ученые, благодаря своим разработкам, позволили многим использовать такое устройство для получения газа. Установка способна генерировать водород (газ Брауна) и этот газ будет использован для получения энергии.
Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды с помощью метода электролиза. Есть много примеров в жизни, когда люди хотят свой дом отапливать оксиводородом. Но чтобы этот вид топлива получил популярность, надо сначала научиться получать его (газ Брауна) в бытовых условиях.
Пока еще нет технологии водородного отопления частного дома, которая была бы достаточно надежной.
Смотрите видео, в котором опытный пользователь разъясняет, как сделать водородный генератор своими руками:
Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.
В нынешнее время отопление водородом своими руками
– вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.
Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.
При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.
Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».
Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.